Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Colin A. Bremner and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{N})=0.002 \AA$
R factor $=0.027$
$w R$ factor $=0.068$
Data-to-parameter ratio $=29.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(1-carbamoylguanidinium) diaquatetrachlorocobaltate(II)

The crystal structure of the title compound, $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\left[\mathrm{CoCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, contains a molecular network of $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)^{+}$cations and trans- $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}\right]^{2-}$ octahedral anions (Co site symmetry $2 / m$). An extensive network of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-\mathrm{H} \cdots(\mathrm{Cl}, \mathrm{Cl}), \mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds results in a structure with a threedimensional hydrogen-bond network.

Comment

The title compound, (I), arose as a side product during our synthetic investigations of organically templated cobalt phosphate networks (Cowley \& Chippindale, 1999). It is isostructural with $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Begley et al., 1988) and $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\left[\mathrm{MnCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Bremner \& Harrison, 2003).

(I)

In (I), Co1 (site symmetry $2 / m$) has flattened, trans, octahedral coordination by two O (water) atoms and four Cl atoms. The cis bond angles lie between 84.64 (3) and 95.36 (3) ${ }^{\circ}$. The Co-O bond distance of 2.1000 (9) \AA and the average $\mathrm{Co}-\mathrm{Cl}$ separation of 2.4695 (4) \AA correlate reasonably well with the ionic radius (IR) sums for the species involved $\left[d_{\mathrm{IR}}(\mathrm{Co}-\mathrm{O})=2.09 \AA\right.$ and $\left.d_{\mathrm{IR}}(\mathrm{Co}-\mathrm{Cl})=2.56 \AA\right]$, assuming the presence of high-spin Co^{2+} (Shannon, 1976). The $\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$ grouping in $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\left[\mathrm{CuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Begley et al., 1988) is much more distorted, with a $\mathrm{Cu}-\mathrm{O}$ distance of 1.992 (3) \AA and $\mathrm{Cu}-\mathrm{Cl}$ bond lengths of 2.305 (1) and 2.791 (1) \AA, which can be ascribed to a typical Jahn-Teller distortion for the $\mathrm{d}^{9} \mathrm{Cu}^{2+}$ species.

The 1-carbamoylguanidinium (guanylurea) cation has normal geometrical parameters $\left[d_{\mathrm{av}}(\mathrm{N}-\mathrm{C})=1.339\right.$ (3) $\left.\AA\right]$, indicating significant delocalization of electrons over the nonhydrogen skeleton (Zaman \& Darlow, 1986; Begley et al., 1988) and is essentially planar (for the non-H atoms, the r.m.s. deviation from the least-squares plane $=0.029 \AA$). A very acute $\left(\theta=129^{\circ}\right)$ intramolecular $\mathrm{N} 4-\mathrm{H} 9 \cdots \mathrm{O} 2$ hydrogen bond is present, which is typical for $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)^{+}$(Bremner \& Harrison, 2002).

Received 29 May 2003
Accepted 4 June 2003
Online 17 June 2003

Figure 1
Component species of (I) (50% displacement ellipsoids, arbitrary spheres for the H atoms and hydrogen bonds indicated by dashed lines). [Symmetry code: (i) $-x, 1-y,-z$.]

Figure 2
Detail of (I), showing an [010] stack of alternating cation pairs and anions. Colour key: $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}$ octahedra purple, Cl atoms green, C atoms blue, N atoms yellow, and H atoms grey (all radii arbitrary). The intramolecular $\mathrm{H} \cdots \mathrm{O}$, other $\mathrm{H} \cdots \mathrm{O}, \mathrm{H} \cdots \mathrm{Cl}$ portions of the hydrogen bonds and the pseudo- $\pi-\pi$-stacking contacts (see text) are coloured light blue, orange, yellow, and purple, respectively.

The component species in (I) interact by way of an extensive hydrogen-bonding network (Table 2). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to chloride ion acceptors involving H 5 and H6 are bifurcated $\left[d_{\mathrm{av}}(\mathrm{H} \cdots \mathrm{Cl})=2.72 \AA, d_{\mathrm{av}}(\mathrm{N} \cdots \mathrm{Cl})=\right.$ $3.398(2) \AA$ and $\left.\theta_{\mathrm{av}}(\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl})=138^{\circ}\right]$, which is a characteristic 'synthon' bonding motif for these species (Brammer et al., 2001). In this case, the pairs of chloride ions occupy an octahedral edge, with $\mathrm{Cl} 1 \cdots \mathrm{Cl} 2$ and $\mathrm{Cl} 1^{\mathrm{v}} \cdots \mathrm{Cl} 2^{\text {iv }}$ [symmetry codes: (iv) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$; (v) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.] separations of 3.4662 (5) and 3.5190 (5) \AA for the interactions involving H5 and H6, respectively. The hydrogen bonds involving H3, H 7 and H 8 are simple $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ links $\left[d_{\mathrm{av}}(\mathrm{H} \cdots \mathrm{Cl})=2.52 \AA\right.$ $d_{\mathrm{av}}(\mathrm{N} \cdots \mathrm{Cl})=3.329(2) \AA$ and $\left.\theta_{\mathrm{av}}(\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl})=159^{\circ}\right]$. Overall, Cl1 accepts three and Cl2 accepts five hydrogen bonds.

The hydrogen-bonding scheme in (I) results in stacks of alternating $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}\right]^{2-}$ octahedra and pairs of 1-carbamoylguanidinium species propagating along [010] (Fig. 2), which are held together by the $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{i}, \mathrm{~N} 1-$ $\mathrm{H} 3 \cdots \mathrm{Cl} 1^{\text {iii }}$, $\mathrm{N} 3-\mathrm{H} 6 \cdots \mathrm{Cl} 2^{\text {iv }}$, and $\mathrm{N} 4-\mathrm{H} 8 \cdots \mathrm{Cl} 2^{\text {iv }}$ bonds (see Table 2 for the acceptor-atom symmetry codes). There may be pseudo $\pi-\pi$-stacking interactions involving the parallel 1-carbamoylguanidinium pairs, with resulting short contact distances of $\mathrm{C} 1 \cdots \mathrm{~N} 4^{\mathrm{vi}}=3.346(2) \AA$ and $\mathrm{C} 2 \cdots \mathrm{O}^{\text {vi }}=$ 3.364 (2) \AA [symmetry code: (vi) $1-x, 1-y, 1-z$].

Figure 3
Unit-cell packing in (I), viewed down [010]. Colour key as in Fig. 2 (pseudo- $\pi-\pi$-stacking contacts have been omitted for clarity).

The stacks are fused into ($10 \overline{1}$) pseudo-sheets by way of the $\mathrm{N} 1-\mathrm{H} 4 \cdots \mathrm{O} 1, \mathrm{~N} 2-\mathrm{H} 5 \cdots(\mathrm{Cl} 1, \mathrm{Cl} 2), \mathrm{N} 3-\mathrm{H} 6 \cdots \mathrm{Cl} 1^{\mathrm{v}}$, and $\mathrm{N} 3-\mathrm{H} 7 \cdots \mathrm{Cl} 2$ bonds, which in turn are crosslinked by the $\mathrm{O} 1-\mathrm{H} 2 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$ bonds (symmetry codes as in Table 2), resulting in a three-dimensional structure.

Experimental

10 ml of $1 \mathrm{M} \mathrm{CoCl}_{2}$ solution, 10 ml of $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution and 0.5 g dicyandiamide were mixed together in a plastic bottle and heated to 353 K for 24 h , resulting in a purple solution. The solution was cooled to room temperature, and rod-like crystals of (I) grew as the solvent slowly evaporated. The dicyandiamide was transformed to guanylurea by slow acid hydrolysis.

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\left[\mathrm{CoCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=443.00$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=6.3488$ (3) A
$b=11.3392$ (5) \AA
$c=11.5436$ (5) \AA
$\beta=103.118(1)^{\circ}$
$V=809.34(6) \AA^{3}$
$Z=2$

Data collection

Bruker SMART1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.650, T_{\text {max }}=0.810$
7802 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.068$
$S=0.96$
2914 reflections
98 parameters
$D_{x}=1.818 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3083 reflections
$\theta=2.6-32.4^{\circ}$
$\mu=1.75 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, purple
$0.26 \times 0.19 \times 0.13 \mathrm{~mm}$

2914 independent reflections
2160 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=32.5^{\circ}$
$h=-8 \rightarrow 9$
$k=-17 \rightarrow 17$
$l=-16 \rightarrow 17$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0356 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters (\AA).

Co1-O1	$2.1000(9)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.3577(17)$
$\mathrm{Co} 1-\mathrm{Cl} 1$	$2.4332(4)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.3926(16)$
$\mathrm{Co} 1-\mathrm{Cl} 2$	$2.5057(3)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.3170(17)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.2297(18)$	$\mathrm{N} 4-\mathrm{C} 2$	$1.3066(19)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3212(19)$		

Table 2
Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.84	1.82	$2.6587(13)$	179
$\mathrm{O} 1-\mathrm{H} 2 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.87	2.37	$3.1465(10)$	149
$\mathrm{~N} 1-\mathrm{H} 3 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.86	2.59	$3.4349(12)$	170
$\mathrm{~N} 1-\mathrm{H} 4 \cdots \mathrm{O} 1$	0.86	2.12	$2.9586(17)$	166
$\mathrm{~N} 2-\mathrm{H} 5 \cdots \mathrm{Cl} 1$	0.86	2.66	$3.2905(14)$	132
$\mathrm{~N} 2-\mathrm{H} 5 \cdots \mathrm{Cl} 2$	0.86	2.77	$3.5040(13)$	144
$\mathrm{~N} 3-\mathrm{H} 6 \cdots \mathrm{Cl} 2^{\mathrm{iv}}$	0.86	2.56	$3.3245(14)$	148
$\mathrm{~N} 3-\mathrm{H} 6 \cdots \mathrm{Cl} 1^{\mathrm{v}}$	0.86	2.87	$3.4749(12)$	129
$\mathrm{~N} 3-\mathrm{H} 7 \cdots \mathrm{Cl} 2$	0.86	2.48	$3.2743(15)$	155
$\mathrm{~N} 4-\mathrm{H} 8 \cdots \mathrm{Cl} 2^{\text {iv }}$	0.86	2.50	$3.2778(13)$	151
$\mathrm{~N} 4-\mathrm{H} 9 \cdots \mathrm{O} 2$	0.86	2.03	$2.6571(16)$	129

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x, 1-y,-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$; (v) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

The H atoms attached to atom O 1 were located in difference maps and refined by riding in their as-found positions. The other H atoms
were placed in idealized locations $[d(\mathrm{~N}-\mathrm{H})=0.86 \AA]$ and refined by riding on their parent atom, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom) in all cases.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

The authors thank Rachel Yeates for assistance.

References

Begley, M. J., Hubberstey, P., Martindale, S. P., Moore, C. H. M. \& Price, N. S. (1988). J. Chem. Res. (M), pp. 101-128.

Brammer, L., Bruton, E. A. \& Sherwood, P. (2001). Cryst. Growth Des. 1, 277290.

Bremner, C. A. \& Harrison, W. T. A. (2002). Acta Cryst. E58, m254-m256.
Bremner, C. A. \& Harrison, W. T. A. (2003). Acta Cryst. In preparation.
Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cowley, A. R. \& Chippindale, A. M. (1999). J. Chem. Soc. Dalton Trans. pp. 2147-2150.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Shape Software (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zaman, N. \& Darlow, S. F. (1986). J. Bangladesh Acad. Sci. 10, 79-84.

