Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Colin A. Bremner and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–N) = 0.002 Å R factor = 0.027 wR factor = 0.068 Data-to-parameter ratio = 29.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

Bis(1-carbamoylguanidinium) diaquatetrachlorocobaltate(II)

The crystal structure of the title compound, $(C_2H_7N_4O)_2[CoCl_4(H_2O)_2]$, contains a molecular network of $(C_2H_7N_4O)^+$ cations and *trans*- $[Co(H_2O)_2Cl_4]^{2-}$ octahedral anions (Co site symmetry 2/*m*). An extensive network of N-H···Cl, N-H···(Cl,Cl), N-H···O, O-H···O and O-H···Cl hydrogen bonds results in a structure with a threedimensional hydrogen-bond network. Received 29 May 2003 Accepted 4 June 2003 Online 17 June 2003

Comment

The title compound, (I), arose as a side product during our synthetic investigations of organically templated cobalt phosphate networks (Cowley & Chippindale, 1999). It is isostructural with $(C_2H_7N_4O)_2[CuCl_4(H_2O)_2]$ (Begley *et al.*, 1988) and $(C_2H_7N_4O)_2[MnCl_4(H_2O)_2]$ (Bremner & Harrison, 2003).

In (I), Co1 (site symmetry 2/m) has flattened, *trans*, octahedral coordination by two O (water) atoms and four Cl atoms. The *cis* bond angles lie between 84.64 (3) and 95.36 (3)°. The Co–O bond distance of 2.1000 (9) Å and the average Co–Cl separation of 2.4695 (4) Å correlate reasonably well with the ionic radius (IR) sums for the species involved $[d_{IR}(Co-O) = 2.09$ Å and $d_{IR}(Co-Cl) = 2.56$ Å], assuming the presence of high-spin Co²⁺ (Shannon, 1976). The $[CuCl_4(H_2O)_2]^{2-}$ grouping in $(C_2H_7N_4O)_2[CuCl_4(H_2O)_2]$ (Begley *et al.*, 1988) is much more distorted, with a Cu–O distance of 1.992 (3) Å and Cu–Cl bond lengths of 2.305 (1) and 2.791 (1) Å, which can be ascribed to a typical Jahn–Teller distortion for the d⁹ Cu²⁺ species.

The 1-carbamoylguanidinium (guanylurea) cation has normal geometrical parameters $[d_{av}(N-C) = 1.339 (3) \text{ Å}]$, indicating significant delocalization of electrons over the nonhydrogen skeleton (Zaman & Darlow, 1986; Begley *et al.*, 1988) and is essentially planar (for the non-H atoms, the r.m.s. deviation from the least-squares plane = 0.029 Å). A very acute ($\theta = 129^\circ$) intramolecular N4–H9···O2 hydrogen bond is present, which is typical for (C₂H₇N₄O)⁺ (Bremner & Harrison, 2002).

Acta Cryst. (2003). E59, m467–m469 DOI: 10.1107/S1600536803012406 Bremner and Harrison • (C₂H₇N₄O)₂[CoCl₄(H₂O)₂] **m467**

metal-organic papers

Figure 1

Component species of (I) (50% displacement ellipsoids, arbitrary spheres for the H atoms and hydrogen bonds indicated by dashed lines). [Symmetry code: (i) -x, 1 - y, -z.]

Figure 2

Detail of (I), showing an [010] stack of alternating cation pairs and anions. Colour key: Co(H2O)2Cl4 octahedra purple, Cl atoms green, C atoms blue, N atoms yellow, and H atoms grey (all radii arbitrary). The intramolecular $\dot{H}{\cdots}O,$ other $H{\cdots}O,$ $H{\cdots}Cl$ portions of the hydrogen bonds and the pseudo- π - π -stacking contacts (see text) are coloured light blue, orange, yellow, and purple, respectively.

The component species in (I) interact by way of an extensive hydrogen-bonding network (Table 2). The $N-H\cdots$ Cl hydrogen bonds to chloride ion acceptors involving H5 and H6 are bifurcated $[d_{av}(H \cdots Cl) = 2.72 \text{ Å}, d_{av}(N \cdots Cl) =$ 3.398 (2) Å and $\theta_{av}(N-H\cdots Cl) = 138^{\circ}$, which is a characteristic 'synthon' bonding motif for these species (Brammer et al., 2001). In this case, the pairs of chloride ions occupy an octahedral edge, with Cl1···Cl2 and Cl1^v···Cl2^{iv} [symmetry codes: (iv) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$; (v) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$.] separations of 3.4662 (5) and 3.5190 (5) Å for the interactions involving H5 and H6, respectively. The hydrogen bonds involving H3, H7 and H8 are simple N-H···Cl links $[d_{av}(H···Cl) = 2.52 \text{ Å}$ $d_{av}(N \cdots Cl) = 3.329 (2) \text{ Å} \text{ and } \theta_{av}(N - H \cdots Cl) = 159^{\circ}].$ Overall, Cl1 accepts three and Cl2 accepts five hydrogen bonds.

The hydrogen-bonding scheme in (I) results in stacks of alternating $[Co(H_2O)_2Cl_4]^{2-}$ octahedra and pairs of 1-carbamoylguanidinium species propagating along [010] (Fig. 2), which are held together by the $O1-H1\cdots O2^{i}$, N1-H3···Cl1ⁱⁱⁱ, N3-H6···Cl2^{iv}, and N4-H8···Cl2^{iv} bonds (see Table 2 for the acceptor-atom symmetry codes). There may be pseudo π - π -stacking interactions involving the parallel 1-carbamoylguanidinium pairs, with resulting short contact distances of $C1 \cdots N4^{vi} = 3.346(2) \text{ Å}$ and $C2 \cdots O2^{vi} =$ 3.364 (2) Å [symmetry code: (vi) 1 - x, 1 - y, 1 - z].

Unit-cell packing in (I), viewed down [010]. Colour key as in Fig. 2 (pseudo- π - π -stacking contacts have been omitted for clarity).

The stacks are fused into $(10\overline{1})$ pseudo-sheets by way of the N1-H4···O1, N2-H5···(Cl1, Cl2), N3-H6···Cl1^v, and N3-H7...Cl2 bonds, which in turn are crosslinked by the O1-H2···Cl2ⁱⁱ bonds (symmetry codes as in Table 2), resulting in a three-dimensional structure.

Experimental

10 ml of 1 M CoCl₂ solution, 10 ml of 1 M H₃PO₄ solution and 0.5 g dicyandiamide were mixed together in a plastic bottle and heated to 353 K for 24 h, resulting in a purple solution. The solution was cooled to room temperature, and rod-like crystals of (I) grew as the solvent slowly evaporated. The dicyandiamide was transformed to guanylurea by slow acid hydrolysis.

Crystal data

$(C_2H_7N_4O)_2[CoCl_4(H_2O)_2]$	$D_x = 1.818 \text{ Mg m}^{-3}$
$M_r = 443.00$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3083
a = 6.3488(3) Å	reflections
b = 11.3392(5) Å	$\theta = 2.6-32.4^{\circ}$
c = 11.5436(5) Å	$\mu = 1.75 \text{ mm}^{-1}$
$\beta = 103.118 (1)^{\circ}$	T = 293 (2) K
V = 809.34 (6) Å ³	Block, purple
Z = 2	$0.26 \times 0.19 \times 0.13 \text{ mm}$
Data collection	
Bruker SMART1000 CCD	2914 independent reflections
diffractometer	2160 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.019$
Absorption correction: multi-scan	$\theta_{\rm max} = 32.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -8 \rightarrow 9$
$T_{\min} = 0.650, \ T_{\max} = 0.810$	$k = -17 \rightarrow 17$

 $k = -17 \rightarrow 17$ $l = -16 \rightarrow 17$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.068$ S = 0.962914 reflections 98 parameters

7802 measured reflections

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0356P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ Å}^2$ $\Delta \rho_{\rm min} = -0.29 \, {\rm e} \, {\rm \AA}^{-3}$

Table 1Selected geometric parameters (Å).

Co1-O1	2.1000 (9)	N2-C2	1.3577 (17)
Co1-Cl1	2.4332 (4)	N2-C1	1.3926 (16)
Co1-Cl2	2.5057 (3)	N3-C2	1.3170 (17)
O2-C1	1.2297 (18)	N4-C2	1.3066 (19)
N1-C1	1.3212 (19)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···O2 ⁱ	0.84	1.82	2.6587 (13)	179
$O1-H2\cdots Cl2^{ii}$	0.87	2.37	3.1465 (10)	149
N1-H3···Cl1 ⁱⁱⁱ	0.86	2.59	3.4349 (12)	170
$N1 - H4 \cdot \cdot \cdot O1$	0.86	2.12	2.9586 (17)	166
$N2-H5\cdots Cl1$	0.86	2.66	3.2905 (14)	132
$N2-H5\cdots Cl2$	0.86	2.77	3.5040 (13)	144
$N3-H6\cdots Cl2^{iv}$	0.86	2.56	3.3245 (14)	148
$N3-H6\cdots Cl1^{v}$	0.86	2.87	3.4749 (12)	129
$N3-H7\cdots Cl2$	0.86	2.48	3.2743 (15)	155
$N4-H8 \cdot \cdot \cdot Cl2^{iv}$	0.86	2.50	3.2778 (13)	151
N4−H9···O2	0.86	2.03	2.6571 (16)	129

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) 1 - x, 1 - y, -z; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$; (v) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$.

The H atoms attached to atom O1 were located in difference maps and refined by riding in their as-found positions. The other H atoms were placed in idealized locations [d(N-H) = 0.86 Å] and refined by riding on their parent atom, with $U_{iso}(H) = 1.2U_{eq}(\text{parent atom})$ in all cases.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *ATOMS* (Shape Software, 1999); software used to prepare material for publication: *SHELXL*97.

The authors thank Rachel Yeates for assistance.

References

- Begley, M. J., Hubberstey, P., Martindale, S. P., Moore, C. H. M. & Price, N. S. (1988). J. Chem. Res. (M), pp. 101–128.
- Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.
- Bremner, C. A. & Harrison, W. T. A. (2002). Acta Cryst. E58, m254-m256.
- Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. In preparation.
- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cowley, A. R. & Chippindale, A. M. (1999). J. Chem. Soc. Dalton Trans. pp. 2147–2150.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565–565.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Shape Software (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zaman, N. & Darlow, S. F. (1986). J. Bangladesh Acad. Sci. 10, 79-84.